Renewable energy solutions like wind and solar operate on nature’s timetable. When the sun blazes or when the breeze blows, power is plentiful—but not necessarily at the moments when consumers need it, like on a hot, calm summer night.
Storing energy from these intermittent sources has aroused interest, yet practical economics and basic chemistry have limited the wider use of green energy. Storage, to be viable, cannot add much to the price of renewable electricity without making it unacceptably expensive. Fossil fuels remain the world’s chief energy source due to their relatively low cost.
In an attempt to design a cost-effective green energy storage solution, a team led by engineers and chemists at Harvard University will use a one-year, $600,000 innovation grant from the U.S. Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E) program to develop a new type of battery. The grant may be subject to renewal beyond a year, depending on performance. The award is part of a $130-million funding effort by ARPA-E through its “OPEN 2012” program, designed to support innovative energy technologies.
Called a flow battery, the technology Harvard is working on offers the prospect of cost-effective, grid-scale electrical energy storage based on eco-friendly small organic molecules. Flow batteries are suitable for storing large amounts of electrical energy in the form of liquid chemicals, which are flowed past the electrochemical conversion hardware and stored externally in inexpensive tanks that can be arbitrarily large. This permits the designer to independently size the electrochemical conversion hardware (which sets the peak power capacity) and the chemical storage tanks (which set the energy capacity).
Read more
Read more
No comments:
Post a Comment